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Abstract

A Mach-uniform finite volume scheme for solving the unsteady Euler equations on staggered unstructured triangular
grids that uses linear reconstruction is described. The scheme is applied to three benchmark problems and is found to be
considerably more accurate than a similar scheme based on piecewise constant reconstruction.
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1. Introduction

Numerical schemes to solve the Euler or Navier–Stokes equations on staggered unstructured triangular
grids can be found in [1–8]. In [8], we presented a scheme for solving the unsteady incompressible Navier–
Stokes equations on staggered unstructured triangular grids. This method uses linear reconstruction to achieve
second-order accuracy. In [7], a scheme was presented that is first-order accurate, and can handle both incom-
pressible and compressible flow in a unified way. The aim of the present paper is to increase the accuracy of the
scheme presented in [7] using the linear reconstruction of staggered vector fields as described in [8]. Linear
reconstruction of scalar quantities is also necessary and will be presented. Our new method solves the
Mach-uniform Euler equations with second-order accuracy.

We briefly review related work on unstructured staggered schemes and on Mach-uniform methods.
The covolume method described in [1–4] uses Delaunay grids and a dual mesh obtained by connecting the
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circumcenters. Scalar variables are located in the circumcenters, and as in all other schemes mentioned here
except in [6], velocity components normal to the faces of the primal grid are stored. A similar scheme is
described in [5], where conservation of kinetic energy and momentum are emphasised.

Schemes that use circumcenters require grids to be of Delaunay type. In our method, scalar variables are
stored in centroids, and the Delaunay property is not required.

The scheme presented in [6] uses centroids instead of circumcenters, and stores momentum vectors in faces
or vertices. The scheme described in [7] also uses centroids, but it stores the normal velocity components in
faces. This is also the approach taken in [8].

Except for [8], the schemes described are first-order accurate. Our scheme is second-order accurate.
Except for [2,7], these papers are restricted to incompressible flows. Staggered schemes have an advantage

over collocated ones in the incompressible limit, because they do not require numerical stabilization to couple
velocity and pressure. In general, there is no reason to use staggered schemes for fully compressible flow. How-
ever, in certain applications, as for example flow in internal combustion engines or flow around aircraft in
take-off or landing conditions, compressible and incompressible regions occur simultaneously. Standard com-
pressible schemes suffer from efficiency and accuracy loss when the Mach number becomes small (below 0.2).
Such problems require Mach-uniform methods that can handle flows at all speeds. Staggering of the grid is
attractive for Mach-uniform methods, because of superior properties in the incompressible case. Mach-
uniform methods that use structured staggered grids were presented in [9,10], and more recently in [11,12].
The only Mach-uniform method that uses staggered unstructured grids that we know of is presented in [7].
This method we extend here to second-order accuracy.

In Section 2 a dimensionless form of the Euler equations is presented that is convenient for Mach-uniform
schemes. Section 3 discusses a Mach-uniform pressure-correction method. Spatial discretization is presented in
Section 4. Linear reconstruction is discussed in Section 5, and in Section 6 we consider flux limiting methods.
Finally, numerical results are presented in Section 7.

2. Governing equations

The Euler equations are given by:
oq
ot
þr � ð~uqÞ ¼ 0; ð1Þ

oma

ot
þr � ð~umaÞ ¼ �p;a; ð2Þ

oqE
ot
þr � ð~uqHÞ ¼ 0; ð3Þ
where q is the density, p is the pressure,~m ¼ q~u is the momentum,~u is the velocity, E ¼ eþ 1
2
~u �~u is the total energy

and H ¼ hþ 1
2
~u �~u is the total enthalpy. Greek indices indicate coordinate directions; Latin indices will refer to

locations in a computational grid. We have h = ce with c the ratio of specific heats, and the equation of state for a
perfect gas can be written as p = (c � 1)qe. By using the equation of state the energy equation (3) can be written as
o

ot
p þ 1

2
ðc� 1Þq~u2

� �
þr � ~u cp þ 1

2
ðc� 1Þq~u2

� �� �
¼ 0; ð4Þ
where~u2 ¼~u �~u. This is the form on which the Mach-uniform pressure-correction method presented in Section
3 is based.

Let ûr, L, q̂r and T̂ r be the reference velocity, length, density, and temperature. We calculate the reference
pressure from the equation of state
p̂r ¼ Rq̂rT̂ r; ð5Þ

and the reference Mach number is
M r ¼ ûr

ffiffiffiffiffiffiffiffiffiffi
cRT̂ r

q�
. ð6Þ
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If we use the following dimensionless quantities: xa ¼ x̂a=L, t ¼ t̂ûr=L, T ¼ T̂=T̂ r, q ¼ q̂=q̂r, ua ¼ ûa=ûr, and
p ¼ p̂=p̂r, where t̂, T̂ , q̂, ûa, and p̂ are dimensional quantities, then the dimensionless momentum equation is
found to be
oma

ot
þr � ð~umaÞ ¼ �

1

cM2
r

p;a. ð7Þ
This equation is singular as Mr! 0. The resulting difficulties are discussed in [13,7]. In order to obtain Mach-
uniform dimensionless equations, instead of p ¼ p̂=p̂r we shall use the following dimensionless pressure, as in
[7,11,12]:
p ¼ p̂ � p̂r

q̂rû2
r

. ð8Þ
The dimensionless momentum and mass conservation equations have the same form as their dimensional
counterparts (1) and (2), whereas the dimensionless version of the pressure-based energy equation (4) is
M2
r

o

ot
p þ 1

2
ðc� 1Þq~u2

� �
þr � ~u cp þ 1

2
ðc� 1Þq~u2

� �� �� 	
þr �~u ¼ 0; ð9Þ
and the dimensionless equation of state is
h ¼ 1

q
ð1þ cM2

r pÞ. ð10Þ
When Mr = 0, Eq. (9) reduces to the incompressible continuity equation.

3. Pressure-correction method

The Mach-uniform pressure-correction sequential update procedure to be used has been presented in [7,11].
In this section we discuss only the time discretization.

Initial conditions determine the starting solution vectors m0, q0, and p0. First the new density is computed
from the discretized mass conservation equation
qnþ1 � qn

Dt
þr � ð~unqnþ1Þ ¼ 0; ð11Þ
where the superscripts indicate the time level, and Dt is the time step.
Next, a prediction of the momentum field m�a is computed from the momentum equation:
m�a � mn
a

Dt
þr � ð~unm�aÞ ¼ �pn

;a. ð12Þ
Here Picard linearization is applied to the nonlinear convection term (i.e.~u is taken at the old time level). The
following pressure-correction is postulated:
~mnþ1 ¼ ~m� � Dtrdp; dp ¼ pnþ1 � pn. ð13Þ

Discretizing (9) in time with the implicit Euler scheme, inserting (13) and substituting
~u� ¼ ~m�=qnþ1 ð14Þ

in the dimensionless pressure-based energy equation (9) leads to
M2
r

dp
Dt
þ 1

2
ðc� 1Þ ð~m

� � DtrdpÞ2=qnþ1 � ð~mnÞ2=qn

Dt

(

þr � ~u� � Dt
qnþ1
rdp

� �
cðpn þ dpÞ þ 1

2
ðc� 1Þð~m� � DtrdpÞ2=qnþ1

� �� �)

þr � ~u� � Dt
qnþ1
rdp

� �
¼ 0. ð15Þ
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Linearization and some additional simplification gives
M2
r

dp
Dt
þ 1

2
ðc� 1Þ

ð~m�Þ2 � 2Dt~m� � rdp
h i

=qnþ1 � ð~mnÞ2=qn

Dt

8<
:

9=
;

þr � ~u� 1þ cM2
r ðpn þ dpÞ þ 1

2
ðc� 1ÞM2

r ð~m�Þ
2
=qnþ1

� �� �

� Dtr � 1þM2
r pn þ 1

2
ðc� 1ÞM2

r ð~m�Þ
2qnþ1

� �
qnþ1

� �
rdp

� 	
¼ 0. ð16Þ
For detailed derivation of this equation see [7,11]. It is used to compute dp. Finally the new pressure and
momentum are computed from (13).

4. Discretization on unstructured triangular staggered grids

An unstructured triangular grid will be used. We choose the normal momentum components averaged over
grid edges
me ¼
1

le

Z
le

ð~m � ~N eÞ dl ð17Þ
as primary momentum unknowns, where ~N e is one of the two possible unit normal vectors in edge e, end le is
the length of edge e. Scalar variables are associated with cells, as shown in Fig. 1.

4.1. Momentum equation

The semi-discretized momentum equation (12) is multiplied by ~N i and integrated over a control volume Xi

consisting of the two triangles sharing edge i, as illustrated in Fig. 2 on the right. Apart from the flux limiting,
the momentum equation is discretized in the same way as in the incompressible case presented in [8] and there-
fore we shall not discuss the discretization of the time derivative and the pressure term. The divergence the-
orem is applied to the convective term:
Z

Xi

r � ½~uð~m � ~NiÞ� dX ¼
I

oXi

ð~u �~nÞð~m � ~NiÞ dC �
X

e

ueð~me � ~NiÞle; ð18Þ
: normal momentum

: scalar quantities

Fig. 1. Staggered positioning of the variables in an unstructured grid.
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Fig. 2. Control volumes used for the scalar equations (left) and the momentum equation (right).
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where le ¼ ð~Ne �~neÞle, and ~ne is the outward normal in face e. In [7], the term ~me � ~N i is reconstructed from
faces k and l if the flow is directed from cell 2 to cell 1, or it is assumed that ~me � ~Ni � mi if the flow is directed
from cell 1 to cell 2. In [8], a linear reconstruction with special treatment of the divergence is employed to
approximate ~me � ~N i. In order to damp numerical wiggles, we use a linear combination of these two schemes.
This will be explained in Section 6.

The reasons to use the divergence-free reconstruction polynomials even when the velocity field is not diver-
gence free are the following: first, it needs twice less memory than the non-divergence-free reconstruction. Sec-
ond, in some zones of the flow velocity may be divergence-free. Third, the divergence is computed exactly with
the divergence-free reconstruction method even if it is not zero.

4.2. Density equation

The semi-discretized density equation (11) is integrated over each triangle of the mesh, and the divergence
theorem is applied to the convective term. Taking the triangle X1 depicted in the left part of Fig. 2 for example,
one obtains
Z

X1

qnþ1 � qn

Dt
dXþ

I
oX1

qnþ1ð~un �~nÞ dC ¼ 0. ð19Þ
We take the triangle averages of q as primary density variables. After approximating the line integral in the
convective term, Eq. (19) reduces to
jX1j
qnþ1

1 � qn
1

Dt
þ
X

e

qnþ1
e un

ele ¼ 0; ð20Þ
where summation takes place over the three faces.
In the first-order upwind scheme [7] the density in face e is taken to be
qnþ1
e ¼ qnþ1

1 if un
ele P 0;

qnþ1
2 if un

ele < 0;

(
ð21Þ
if e is an internal face, and qnþ1
e ¼ qnþ1

1 if e is a boundary face where q is not prescribed. Note that if un
ele > 0

then the flow direction is out of cell 1, otherwise into.
In order to obtain a more accurate scheme, we use upwind-biased linear interpolation to approximate qnþ1

e .
This will be discussed in Section 5.

The convecting velocity un
e is computed by dividing the convected momentum mn

e by the density qn
e , which

needs to be computed. In the first-order scheme it is computed as an area-weighted average of the densities in
the two neighboring cells:
qn
e ¼

X2

X1 þ X2

qn
1 þ

X1

X1 þ X2

qn
2. ð22Þ
If e is a boundary face and cell 2 is missing then we take qn
e ¼ qn

1.
In the new scheme we use face-centered linear reconstruction (see Section 5) to compute qn

e .

4.3. Mach-uniform pressure-correction equation

The Mach-uniform pressure-correction equation (16) is discretized in [7] in a similar way as the continuity
equation. It is integrated over the shaded control volume shown in the left part of Fig. 2. Before explaining how
we modified this discretization in order to obtain higher-order accuracy, we shall explain how it is done in [7].

The momentum vector in the time derivative is reconstructed from the three faces of the control volume
using least squares approximation. The gradient of the pressure correction is approximated by a least squares
fit to the normal pressure gradients in the faces of the control volume, which are computed by the path integral
method (see [14]). If the normal momentum component is prescribed in one of the control volume faces, then it
follows from (13) that in this face $dp = 0 because m* = mn + 1.
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The divergence theorem is applied to the convection and the second-order term (second and third row in the
formula (16)). Convected quantities in the convection term are computed in an upwind manner: density, pres-
sure and the pressure-correction in face e are evaluated in cell 1 if the flow is outward (see the left part of
Fig. 2), or in cell 2 otherwise. The momentum vector is reconstructed from faces i and j or from faces k
and l, depending on the direction of the flow. Central approximations of momentum, pressure and density
in faces are used in the second-order term. For details see [7].

In order to obtain higher-order accuracy, we modified this scheme by introducing linear reconstruction.
Momentum in the time derivative is computed as the average of momenta reconstructed in the vertices of
the control volume by using the divergence-free linear reconstruction polynomials (see [8]) based in three ver-
tices of the control volume. The divergence is reconstructed by applying the divergence formula to the control
volume. Momentum in the convective term in face e is obtained from the reconstruction polynomial based in
vertex A if the fluid flows into the control volume and the divergence is computed from cell 1, otherwise vertex
B and cell 2 are used. Pressure, pressure-correction and density are reconstructed by using upwind-biased cell-
based or vertex-based linear reconstruction, which will be presented in Section 5. The second-order term van-
ishes for the steady solution, and since our scheme is first-order accurate in time, there is no need to use linear
reconstruction for this term.

5. Linear reconstruction of scalars

A convected scalar quantity w is reconstructed in face e (see the left part of Fig. 2) by using the formula
Fig. 3.
(right)
we ¼
w1 þrw1;e � ð~re �~r1Þ if un

ele P 0;

w2 þrw2;e � ð~re �~r2Þ if un
ele < 0;

(
ð23Þ
where~r is the position vector. The gradient $w is determined by least squares approximation either from the
cells surrounding the upwind cell (1 or 2) or from the cells surrounding the upwind vertex (A or B), as illus-
trated in Fig. 3. These two methods will be called cell-based and vertex-based reconstruction, respectively. Cell-
based reconstruction typically involves fewer cells (cf. Fig. 3), and gives a unique gradient per cell (i.e. $w2,e

does not depend on e), which does not hold for the vertex-based reconstruction. The vertex-based reconstruc-
tion uses quantities from the upwind side of the edge only; this may enhance monotonicity of numerical solu-
tions. Both approaches were tested and results are presented in Section 7.

Face-based reconstruction of the density needed to compute the convecting velocity in face e (see Section
4.2) is obtained as an average of the cell-based reconstruction polynomials based in cells 1 and 2.

We considered two ways to determine the gradient using the vertex-based reconstruction. One possibility,
assuming uele < 0, is to find a and $wB = [b,c] such that a linear polynomial
P Bð~rÞ ¼ aþrwB � ð~r �~rBÞ ð24Þ

matches the values of the scalar in the cells surrounding vertex B as accurately as possible in the least-squares
sense, and to set $w2,e ” $wB in (23). The other possibility is to postulate, similar to (23),
wð~rÞ ¼ w2 þrw2;e � ð~r �~r2Þ ð25Þ
A

B

A

B
e

1
2

i

k

l

e

1
2

i

k

l

Reconstruction stencil in the case when fluid flows into the control volume based in the upwind cell (left) and the upwind vertex
. Cells that are used for reconstruction are marked by dots.
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and to determine $w2,e by least squares approximation. In the first case one linear polynomial is associated
with each vertex. In the second case two linear polynomials are associated with each face, one for each possible
flow direction. Since there are roughly three times more faces then vertices, the second method requires six
times more memory, while it is only a bit more accurate.

We also tried not to ignore the constant part a of the linear polynomial (24) and to use it instead of w2.
However, the resulting scheme did not converge in time.

6. Monotonicity considerations

In the vicinity of steep gradients or discontinuities, spurious oscillations may occur. Not only are these
oscillations non-physical, but if they become too large, the density may get close to zero. The convecting veloc-
ity is computed by dividing the momentum by the density, and therefore it may become very large, so the solu-
tion procedure breaks up.

These spurious wiggles are a well-known phenomenon, which was investigated by Godunov in [15]. His
order barrier theorem shows that linear non-oscillatory schemes are at most first-order accurate. For this rea-
son every higher-order non-oscillatory scheme must be nonlinear.

Several concepts exist that ensure that a scheme is non-oscillatory. One of them is monotonicity preserva-

tion, a requirement that new extrema cannot appear in the solution. Another one is that the scheme is total

variation diminishing (TVD), which means that the total variation of the solution cannot grow in time. One
which is easier to enforce is that a scheme is local extremum diminishing (LED), which means that local max-
ima cannot increase and local minima cannot decrease. All these requirements indeed hold for the exact solu-
tion (for scalar problems only).

Numerous authors have developed methods to enforce these requirements. For a survey, see Section 9.4 of
[13]. One possible way to ensure that a scheme is LED is flux limiting. The approximation (23) is replaced by
we ¼
w1 þ /1rw1;e � ð~re �~r1Þ if un

ele P 0;

w2 þ /2rw2;e � ð~re �~r2Þ if un
ele < 0;

(
ð26Þ
where / is so-called flux limiter, determined such that
min
j
ðwj;wiÞ 6 wi þ /irwi;e � ð~re �~riÞ 6 max

j
ðwj;wiÞ; 8e; ð27Þ
where the minimum and the maximum are taken over cell i and the surrounding cells. By surrounding cells we
mean the cells that have a common edge with cell i. Quantities that are evaluated at boundaries are not limited.
This is a simplified variant of the criterion that Barth uses in [16,17]. It is a necessary and, according to [18],
close to sufficient condition for a scheme to be LED. We compute the limiter of Barth and Jespersen [16,19] in
the following way:
Hi;e ¼ rwi;e � ð~re �~riÞ; ð28Þ

/i;e ¼

min 1;
max

j
ðwj;wiÞ�wi

Hi;e

� �
if Hi;e > 0;

min 1;
min

j
ðwj;wiÞ�wi

Hi;e

� �
if Hi;e < 0;

1 if Hi;e ¼ 0;

8>>>>><
>>>>>:

ð29Þ
and a unique value of the limiter per cell is taken to be
/i ¼ min
e
ð/i;eÞ. ð30Þ
In smooth regions where oscillations usually do not appear, the value of / is close to one, while near discon-
tinuities it is close to zero. In this way we switch to the first-order scheme when the second-order scheme is
oscillatory. If only the density equation is solved, the first-order scheme is the same as the one presented in
[16], and for this one it has been proven that it is non-oscillatory. It is essential that $wi,e in the limiter
(28) is computed in the same way as the gradient in the reconstruction (26). If we use the cell-based gradient



284 D. Vidović et al. / Journal of Computational Physics 217 (2006) 277–294
in the limiter and the vertex-based gradient in the reconstruction, the oscillations will not be successfully
damped, as we have found.

One drawback of the limiter of Barth and Jespersen is that it prevents convergence to a truly steady state.
Venkatakrishnan suggests in [20] that the reason for this is the non-differentiability of min and max functions,
and proposes the following modification to the limiter of Barth and Jespersen:
/i;e ¼ WðDi;Hi;eÞ ¼
D2

i þ 2DiHi;e þ e2

D2
i þ DiHi;e þ 2H2

i;e þ e2
; ð31Þ

Di ¼

max
j
ðwj;wiÞ � wi for Hi;e > 0;

min
j
ðwj;wiÞ � wi for Hi;e < 0;

1 for Hi;e ¼ 0;

8>><
>>: ð32Þ
where
e2 ¼ ðKhÞ3 ð33Þ

is a relaxation factor aimed to prevent limiting of smooth extrema, h is a local mesh parameter, and K is a case-
dependent constant. The original limiter of Barth and Jespersen can also be modified to include such a relax-
ation factor.

However, it is noted in [18] that Venkatakrishnan’s limiter also may suffer from stagnation in convergence
to steady state, and our experience confirms this. Therefore we use the so-called historic modification of the
limiter proposed by Delanaye [21]: after a certain number of iterations, the limiter is computed as a minimum
of the limiters in the previous and the current time step. This number of iterations is again case dependent, and
should be taken large enough. The historic modification leads to the steady state in every case that we tried.

Although it is clear how to limit the convected density in the mass equation, it is not straightforward to
decide how to handle the convective term of the energy equation (16). If we limit only dp and not pn, the
scheme does not work. The reason might be that it is actually the new pressure that we are computing here,
i.e. pn + dp. On the other hand, our experiments have shown that limiting the convected kinetic energy term
1
2
ðc� 1ÞM2

r~m
� � ~m�=qnþ1 does not make any significant difference.

However, the concepts of monotonicity preservation, TVD and LED are not easily extendible to staggered
unstructured meshes. It is not clear what an extremum in the discrete momentum field should be, because this
field consists of incomparable normal components. This is why it is hard to design an oscillation detector for
the momentum. Furthermore, even the first-order upwind scheme [7] is not completely oscillation-free. Very
small oscillations in the pressure and the density occur around discontinuities, though they are usually not
visible. In the example presented in Section 7.2.2, the Mach number obtained by the first-order scheme has
an oscillation of 0.6% of the jump in Mach.

Fortunately, oscillations typically appear in all variables simultaneously. Therefore we can determine the
oscillation indicator / from some scalar quantity. For this purpose we use the density. When strong shocks
are present, it may be advantageous to use the inverse of the density, in order to switch to the first-order recon-
struction when the density becomes small, otherwise the scheme may break down.

Another problem is that we cannot use a formula similar to (26) for the momentum, because we do not
have the momentum vector in any point. Adding the gradient to a first-order reconstruction used in [7] cannot
result in a second-order reconstruction, because there is no point where this first-order reconstruction is more
than first-order accurate. If we remove the gradient part from the vertex-based divergence-free momentum
reconstruction, this does not damp the wiggles.

A higher-order limited scheme for momentum is obtained as follows. We shall denote the piecewise con-
stant approximation of ~me � ~N i used in scheme [7] by ð~me � ~NiÞ1 and the piecewise linear approximation used
in [8] by ð~me � ~NiÞ2. The approximation that we use here is a linear combination of these two, i.e.
~me � ~Ni � ð1� /Þð~me � ~NiÞ1 þ /ð~me � ~N iÞ2. ð34Þ

Of course, we cannot expect that spurious wiggles will be totally eliminated, because the stencil that we use for
the reconstruction of momentum is inevitably different from the one that is used to compute the limiter,
among other reasons.
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7. Numerical results

The purpose of the numerical experiments described here is to show improved accuracy compared to the
first-order upwind method described in [7].

7.1. Ringleb flow

For this transonic flow in a curved duct the analytic solution of the potential flow equations and hence
Euler equations is known. It was first published in [22], and a description may be found in [23]. This is a valu-
able test case to investigate the accuracy of numerical schemes for transonic flow. The flow is directed upwards
in Fig. 4. There is a small supersonic flow region in the middle of the right wall, but there is no shock. The
maximum Mach number is 1.09. The problem was solved on regular and distorted grids (see Figs. 4 and 7)
using the first-order and the second-order method. The exact Mach isolines are circular arcs. The exact veloc-
ity and density were prescribed along the inlet (lower boundary), normal velocity was set to zero along the left
and the right boundary, and the pressure was prescribed along the outflow (upper) boundary. The grids with
10–100 cells along the inlet were generated independently from each other, preserving the quality of the grids
shown in Figs. 4 and 7.

We denote the local truncation error of the momentum, the density and the pressure equation by sm, sq and
sp, respectively. The (global truncation) error of the momentum, the density, and the pressure will be denoted
by em, eq and ep, respectively. The accuracy of a scheme is usually estimated either in terms of the local trun-
cation errors, or one refers to the maximal-order of a polynomial that can be exactly recovered by the recon-
struction method being used. However, an example of a scheme which does not converge in the sense that the
global truncation errors do not converge to zero, even though linear reconstruction is used and the local trun-
cation error converges with second-order accuracy, can be found in [8]. Therefore we examine the global trun-
cation error here.

The order of accuracy a is estimated in the following way. It is assumed that some norm of the error
depends on h as iei � aha, h fl 0, where h is a mesh parameter (in our case, h = 1/n, n is the number of edges
along the inlet), a is the order of accuracy, and a is some constant. This can be written as
Fig. 4.
metho
log a
log h

þ a ¼ log kek
log h

. ð35Þ
We estimate log a and a by least squares from a set of results obtained with meshes of the same quality and
various h.
Ringleb flow, regular mesh (left) and Mach isolines obtained with the first-order (middle) and the second-order unlimited (right)
d.
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Fig. 5. Ringleb flow, regular grids; norms of local and global truncation errors versus the mesh parameter. ‘‘+’’: first-order scheme; ‘‘�’’:
vertex-based reconstruction of all convected variables, no limiter; ‘‘–’’: vertex-based reconstruction of the density, cell-based reconstruction
of the pressure, no limiter; ‘‘Æ’’: vertex-based reconstruction of the density, cell-based reconstruction of the pressure, unrelaxed
Venkatakrishnan limiter. The estimate of the rate of convergence a refers to the results marked ‘‘–’’.
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D. Vidović et al. / Journal of Computational Physics 217 (2006) 277–294 287
Fig. 5 shows the error of the solution obtained on the regular grid. The independent parameter along the
horizontal axis is the mesh parameter, and the parameter along the vertical axis is a norm of an error.

Fig. 5 gives local (s) and global (e) truncation error norms of the first-order scheme and of three variants
of the scheme with linear reconstruction. The best results were obtained with the vertex-based scalar recon-
struction in the density equation, and the cell-based reconstruction in the pressure equation. If the vertex-
based reconstruction is used in both equations, the results are less accurate, probably because more artificial
dissipation is introduced, or because the cell-based reconstruction of the pressure allows the pressure pre-
scribed at the outlet to propagate. If the cell-based reconstruction is used in the density equation, the
scheme does not converge in time when strong shocks are present (see Section 7.2.2), therefore we do
not consider this variant. We see that the limited scheme is a bit less accurate than the unlimited one,
i.e. the limiter is not completely inactive. If a non-zero relaxation factor is used (see (6)), the difference
in accuracy is smaller.

The amount of memory used by these schemes is proportional to the amount of data in the mesh. Schemes
that employ linear reconstruction use about 50% more memory than the first-order scheme.

Fig. 6 shows the total time and the number of time steps needed to reach the stationary solution versus the
mesh parameter. Since the maximal allowed time step is found to be proportional to the mesh parameter, we
choose the time step as Dt = 1.5 * h. As expected, schemes with linear reconstruction usually need more time
to converge to the steady solution than the first-order scheme, although the number of time steps needed is
larger in the case of the first-order scheme.

A jump in the total time needed by the first-order scheme to reach the steady state is visible in Fig. 6 on the
left, while there is no jump in the number of time steps. This jump is due to memory cashing. It also exists with
the other schemes, although it is not so obvious.

On distorted grids (see Figs. 7 and 8) these schemes still work, but they are less accurate than on the regular
ones. However, the linear reconstruction improves the accuracy considerably. If the grid is distorted more
than shown in Fig. 7, the schemes with linear reconstruction may break up. The time and the number of steps
needed to reach the stationary solution are shown in Fig. 9. The time step was chosen as Dt = 1.5 * h.

7.2. Channel with a bump

The flow in a channel with a circular arc bump is used to evaluate the presented method for computations
of steady state solutions. We present the incompressible and the supersonic flow case. In the incompressible
flow case the height of the bump is 10% of the channel height, while in the supersonic flow case it is 4%. This
benchmark was proposed in [24].
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Fig. 6. Ringleb flow, regular grids; total computation time in seconds (left) and the number of time steps needed to reach the stationary
solution (right) versus the mesh parameter. ‘‘+’’: first-order scheme; ‘‘�’’: vertex-based reconstruction of all convected variables, no limiter;
‘‘–’’: vertex-based reconstruction of the density, cell-based reconstruction of the pressure, no limiter; ‘‘Æ’’: vertex-based reconstruction of
the density, cell-based reconstruction of the pressure, unrelaxed Venkatakrishnan limiter.



Fig. 7. Ringleb flow, distorted mesh (left) and Mach isolines obtained with the first-order (middle) and the second-order unlimited (right)
method.

288 D. Vidović et al. / Journal of Computational Physics 217 (2006) 277–294
7.2.1. Incompressible flow case

For M = 0 we want to demonstrate that the solution obtained with the Mach-uniform method matches the
solution obtained with the incompressible method presented in [8]. The mesh is shown in Fig. 10. The isobars
and the pressure distribution along the lower wall obtained with the method for incompressible flow and with
the Mach-uniform method are shown in Fig. 11. There is no visible difference between these two solutions.
Actual differences are of order 10�5, which we consider reasonable since we are comparing results of different
codes.

7.2.2. Supersonic flow case

The mesh used in this case is shown in Fig. 12. The inflow Mach number is 1.65. The Mach number
obtained by the first-order scheme has an oscillation before the first shock on the lower wall of about 0.6%
of the jump in Mach (see Fig. 13).

If the vertex-based reconstruction is used for the density equation and the cell-based reconstruction is used
for the pressure equation, and limiting is applied, the oscillations are not much larger than in the first-order
case, and the shock resolution is better. This especially holds for the reflected shock, which is completely
blurred in the case of the first-order scheme. If the cell based reconstruction is used for the density, the scheme
does not converge in time.

In this example we used time step Dt = 0.001. The scheme with linear reconstruction took twice more time
steps and 4.4 times more computational time to finish, and it used 50% more memory. The difference between
the time needed by the first-order scheme and by the second-order scheme to converge to the steady state is
larger than in the case of Ringleb flow. The reason is that discontinuities are present.

The results obtained are in good agreement with [24]. The obtained solution is less accurate at the outflow
boundary than in the interior (see the left side of Fig. 14), but this is also visible in [24].

7.3. NACA 0012 airfoil

We have computed the flow around the NACA 0012 airfoil for M = 0.8 and angle of attack a = 1.25�. This
transonic benchmark problem was presented in [25]. Mach isolines obtained with the first-order scheme and
the superlinear scheme with limiting on the grid shown in Fig. 16 are shown in Fig. 15. Vertex-based scalar
reconstruction was used in the density equation, and cell-based scalar reconstruction was used in the
Mach-uniform pressure-correction equation. As expected, the shock on the upper surface of the airfoil is shar-
per in the case of the superlinear scheme.
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Fig. 8. Ringleb flow, distorted grids. The errors of solutions versus the mesh parameter. ‘‘�’’: first-order scheme; ‘‘–’’: vertex-based
reconstruction of the density, cell-based reconstruction of the pressure, no limiter; ‘‘Æ’’: vertex-based reconstruction of the density, cell-
based reconstruction of the pressure, unrelaxed Venkatakrishnan limiter. The estimate of the rate of convergence a refers to the results
marked ‘‘–’’.
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Fig. 10. Channel with a bump, mesh used in the incompressible flow case.
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Fig. 11. Channel with a bump, incompressible flow case. Pressure isolines obtained with the incompressible flow (left upper) and the
Mach-uniform (left lower) method, and the pressure along the lower wall.
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The Mach distribution along the airfoil is shown in Fig. 16 on the right, in comparison with the AGARD
benchmark results published in [25]. Parameter n is the number of grid points along the upper surface of the
airfoil. The weak shock on the lower surface of the airfoil is particularly hard to capture with a highly dissi-
pative scheme. The first-order scheme does not see it. But the second-order scheme gives an indication of this
shock even for a twice less fine grid than the one shown in Fig. 16. In this example we used time step



Fig. 12. Channel with a bump, mesh used in the supersonic flow case.
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Fig. 13. Channel with a bump, supersonic flow case. Mach number isolines. First-order scheme (top) and the scheme with linear
reconstruction (bottom). Vertex-based reconstruction was applied in the density and in the momentum equation, and the cell based
reconstruction was used in the energy equation.
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Dt = 0.0003. The scheme with linear reconstruction took twice more time steps and 4.3 times more computa-
tional time to finish, and it used 50% more memory.

8. Conservation properties

As shown in [26], since the momentum field on an unstructured staggered grid consists of incomparable
normal components, it cannot be explicitly shown that the discretization of the momentum equation is con-
servative. Hence, the Lax–Wendroff theorem does not apply. Nevertheless, as shown in by numerical exper-
iments [26], numerical solutions satisfy the Rankine–Hugoniot conditions. Our scheme conserves mass locally,
which is a direct consequence of our choice of the control volumes. The kinetic energy and the momentum are
not conserved as they are in [5].

9. Conclusion

A novel Mach-uniform staggered unstructured scheme for solving Euler equations that uses linear recon-
struction has been presented. It has been demonstrated that this scheme is second-order accurate for smooth
solutions if the cell-based reconstruction is used to evaluate the convected quantities in the Mach-uniform
pressure correction equation, and the node-based reconstructions are used in the density and the momentum
equation. The estimate of the accuracy was based on the global truncation error and not on the local trunca-
tion error or on the order of the reconstruction employed.

The computational time needed to reach the steady state solution with the second-order scheme is compa-
rable with the time needed to reach the steady state solution by the first-order scheme if the solution is smooth,
and it is up to five times larger in the discontinuous case. The second-order scheme uses 50% more memory.

In the case of a discontinuous solution, the shock resolution is better and small oscillations that occur are
comparable with those obtained with the first-order scheme.
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[23] G. Chiocchia, Exact solutions to transonic and supersonic flows, AGARDograph No. 211, AGARD, Neuilly-sur-Seine, France, 1985.
[24] S. Eidelman, P. Colella, R. Shreeve, Application of the Godunov method and its second-order extension to cascade flow modelling,

AIAA J. 22 (1984) 1609–1615.
[25] H. Yoshihara, P. Sacher, Test cases for inviscid flow field methods, AGARDograph No. 211, AGARD, Neuilly-sur-Seine, France,

1985.
[26] I. Wenneker, A. Segal, P. Wesseling, Conservation properties of a new unstructured staggered scheme, Comput. Fluids 32 (2003) 139–

147.


	A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids
	Introduction
	Governing equations
	Pressure-correction method
	Discretization on unstructured triangular staggered grids
	Momentum equation
	Density equation
	Mach-uniform pressure-correction equation

	Linear reconstruction of scalars
	Monotonicity considerations
	Numerical results
	Ringleb flow
	Channel with a bump
	Incompressible flow case
	Supersonic flow case

	NACA 0012 airfoil

	Conservation properties
	Conclusion
	References


